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Abstract

In this paper, we prove the long-time existence of the Hermitian–Einstein flow on a holomorphic
vector bundle over a compact Hermitian (non-Kähler) manifold, and solve the Dirichlet problem for
the Hermitian–Einstein equations. We also prove the existence of Hermitian–Einstein metrics for
holomorphic vector bundles on a class of complete non-compact Hermitian manifolds.
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1. Introduction

Let (M,g) be a Hermitian manifold with Hermitian metricg, andE be a rankr holo-
morphic vector bundle overM. Given any Hermitian metricH on the holomorphic vector
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bundleE there exists one and only one complex metric connectionAH . If the curvature
form FH of AH satisfies

√−1ΛFH = λ Id, (1.1)

thenH will be called a Hermitian–Einstein metric, whereλ is a real number. After the
pioneering work of Kobayashi[8,9], the relation between the existence of Hermitian–
Einstein metrics and stable holomorphic vector bundles over closed Kähler manifolds is by
now well understood due to the works of Narasimhan and Seshadri[16], Donaldson[3], Siu
[19], Uhlenbeck and Yau[21,22], and others. Later, in Ref.[4] the Dirichlet boundary value
problem was solved for Hermitian–Einstein metrics over compact Kähler manifolds with
non-empty boundary. In this paper, we study the existence of Hermitian–Einstein metrics
for holomorphic vector bundles over Hermitian (non-Kähler) manifolds. We should point
out that if (M,g) is non-K̈ahler then the basic K̈ahler identities

∂̄∗
A = −√−1Λ∂A; ∂∗

A = √−1Λ∂̄A. (1.2)

do not hold. So the non-K̈ahler case is analytically more difficult than the Kähler case.
We first investigate the associated parabolic system, i.e. Hermitian–Einstein flow over

compact Hermitian manifolds, and we prove the long-time existence of the Hermitian–
Einstein flow. In general, the Hermitian–Einstein flow does not converge to a Hermitian–
Einstein metric whenM is a closed Hermitian manifold without boundary. (In this case,
the stability of holomorphic vector bundle may ensure the convergence of the Hermitian–
Einstein flow under some conditions[2,12,13,19]). However we prove the solvability of the
Dirichlet problem for Hermitian–Einstein metric over compact Hermitian manifolds with
smooth boundary.

Theorem 1.1. Let E be a holomorphic vector bundle over the compact Hermitianmanifold
M̄ with non-empty smooth boundary∂M. For any Hermitian metricϕ on the restriction of
E to ∂M there is a unique Hermitian–Einstein metric H on E such thatH = ϕ over∂M.

In the second part of this paper, we study the Hermitian–Einstein equation on holomor-
phic vector bundles over complete Hermitian manifolds; here complete means complete,
non-compact and without boundary. InSection 5, we prove the long-time existence of the
Hermitian–Einstein flow on any complete Hermitian manifold under the assumption that
the initial metric has bounded mean curvature. It is reasonable that the long-time solution
will converge to a Hermitian–Einstein metric under some assumptions on manifold and
initial metric. But, inSection 6, we adapt the direct elliptic method, usingTheorem 1.1and
compact exhaustion to prove the existence of Hermitian–Einstein metric on some complete
Hermitian manifolds.

2. Preliminary results

Let (M,g) be a compact Hermitian manifold, andE be a rankr holomorphic vector
bundle overM. Denote byω the Kähler form, and define the operatorΛ as the contraction
with ω, i.e. forα ∈ Ω1,1(M,E), then

Λα = 〈α, ω〉. (2.1)
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A connectionA on the vector bundleE is called Hermitian–Einstein if it is integrable and
the corresponding curvature formFA satisfies the following Einstein condition:

√−1ΛFA = λ Id,

whereλ is some real constant. When (M,g) is a Kähler manifold. We know that the con-
nectionAmust be Yang-Mill connection. So in this case,A is also called Hermitian–Yang-
Mills.

Let H be a Hermitian metric on holomorphic vector bundleE, and denote the holo-
morphic structure bȳ∂E, then there exists a canonical metric connection which is de-
noted byAH . Taking a local holomorphic basiseα(1 ≤ α ≤ r), the Hermitian metricH
is a positive Hermitian matrix (Hαβ̄)1≤α,β≤r which can also be denoted byH for sim-
plicity; hereHαβ̄ = H(eα, eβ). In fact, the complex metric connection can be written as
following:

AH = H−1∂H, (2.2)

and the curvature form:

FH = ∂̄AH = ∂̄(H−1∂H). (2.3)

In the literature sometimes the connection is written as (∂H)H−1 because of the reversal of
the roles of the row and column indices.

Definition 2.1. If a Hermitian metricH on E, and the corresponding canonical metric
connectionAH is Hermitian–Einstein, then the metricH is called a Hermitian–Einstein
metric.

It is well known that any two Hermitian metricsH andK on bundleE are related by
H = Kh, whereh = K−1H ∈ Ω0(M,End(E)) is positive and self-adjoint with respect to
K. It is easy to check that

AH − AK = h−1∂Kh, (2.4)

FH − FK = ∂̄(h−1∂Kh). (2.5)

Let H0 be a Hermitian metric onE. Consider a family of Hermitian metricH(t) onEwith
initial metric H(0) = H0. Denote byAH(t) andFH(t) the corresponding connections and
curvature forms, denoteh(t) = H−1

0 H(t). When there is no confusion, we will omit the
parametert and simply writeH,AH, FH, h for H(t), AH(t), FH(t), h(t), respectively. The
Hermite–Einstein evolution equation is

H−1∂H

∂t
= −2(

√−1ΛFH − λ Id). (2.6)

We also call it the Hermitian–Einstein flow. Choosing local complex coordinates{zi}mi=1 on
M, as in[10], we define the holomorphic Laplace operator for functions

∆̃f = −2
√−1Λ∂̄∂f = 2gij̄

∂2f

∂zi∂z̄j
, (2.7)
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where (gij̄) is the inverse matrix of the metric matrix (gij̄). As usual, we denote the Beltrami–
Laplacian operator by∆. The difference of the two Laplacians is given by a first order
differential operator as follows

(∆̃ − ∆)f = 〈V,∇f 〉g, (2.8)

whereV is a well-defined vector field onM. The holomorphic Laplace operator∆̃ coincides
with the usual Laplace operator if and only if the Hermitian manifold (M,g) is Kähler. By
taking local holomorphic basiseα (1 ≤ α ≤ r) on bundleE and local, complex coordinates
{zi}mi=1 onM, then the Hermitian–Einstein flowEq. (2.6)can be written as follows:

∂H

∂t
= −2

√−1Λ∂̄∂H + 2
√−1Λ∂̄HH−1∂H + 2λH

= ∆̃H + 2
√−1Λ∂̄HH−1∂H + 2λH, (2.6′)

whereH denotes the Hermitian matrix (Hαβ̄)1≤α,β≤r. From the above formula, we see that
the Hermite–Einstein evolution equation is a non-linear strictly parabolic equation.

Proposition 2.2. LetH(t) be a solution of Hermitian–Einstein flow(2.6),then(
∂

∂t
− ∆̃

)
|√−1ΛFH − λ Id|2H ≤ 0. (2.8′)

Proof. For simplicity, we denote
√−1ΛFH − λ Id = θ. By calculating directly, we have

∆̃|θ|2H = −2
√−1Λ∂̄∂{trθH−1θ̄tH}

= −2
√−1Λ tr{∂̄∂HθH−1θ̄tH − ∂HθH−1∂Hθ

t
H + ∂̄θH−1∂̄θ

t
H}

+ 2
√−1Λtr{θH−1∂H ∂̄θ

t
H}

= 2Re〈−2
√−1Λ∂̄∂Hθ, θ〉H + 2|∂Hθ|2H + 2|∂̄θ|2H. (2.8)

and

∂

∂t
(ΛFH ) = ∂

∂t
(Λ∂̄(h−1∂0h)) = Λ∂̄

{
∂

∂t
(h−1∂h + h−1H−1

0 ∂H0h)

}

= Λ∂̄

{
∂

(
h−1∂h

∂t

)
− h−1∂h

∂t
H−1∂H + H−1∂Hh−1∂h

∂t

}

= Λ∂̄

(
∂H

(
h−1∂h

∂t

))
= −2

√−1Λ∂̄(∂H (
√−1ΛFH − λ Id)), (2.9)

whereh = H−1
0 H andDH = ∂H + ∂̄. Using above formulas, we have(

∆̃ − ∂

∂t

)
|√−1ΛFH − λ Id|2H = 2|∂Hθ|2H + 2|∂̄θ|2H ≥ 0 (2.10)

�

For further discussion, we will introduce the Donaldson’s “distance” on the space of
Hermitian metrics as follows.
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Definition 2.3. For any two Hermitian metricsH, K on bundleE set

σ(H,K) = tr H−1K + tr K−1H − 2 rankE. (2.11)

It is obvious thatσ(H,K) ≥ 0 with equality if and only ifH = K. The functionσ is not
quite a metric but it serves almost equally well in our problem, moreover the functionσ

compare uniformly withd(, ), whered is the Riemannian distance function on the metric
space, in thatf1(d) ≤ σ ≤ f2(d) for monotone functionsf1, f2. In particular, a sequence
of metricsHi converges toH in the usualC0 topology if and only if SupMσ(Hi,H) −→ 0.

Let h = K−1H , and apply−√−1Λ to Eq. (2.5) and taking the trace in the bundleE,
we have

tr(
√−1h(ΛFH − ΛFK)) = −1

2∆̃tr h + tr(−√−1Λ∂̄hh−1∂Kh). (2.12)

Similarly, we have

tr(
√−1h−1(ΛFK − ΛFH )) = −1

2∆̃tr h−1 + tr(−√−1Λ∂̄h−1h∂Hh−1). (2.13)

Sinceh is a positive Hermitian endomorphism, by choosing a local normal coordinates of
M at the point under consideration and a local trivialization of bundleE, it is easy to check
[3,19] that tr(−√−1Λ∂̄hh−1∂Kh) is non-negative, so we have the following proposition.

Proposition 2.4. Let H and K be two Hermitian–Einstein metrics, thenσ(H,K) is sub-
harmonic with respect to the holomorphic Laplace operator, i.e.

∆̃σ(H,K) ≥ 0. (2.14)

Let H(t), K(t) be two solutions of the Hermitian–Einstein flow (Eq. (2.6)), and denote
h(t) = K(t)−1H(t). Using formulas (2.12) and (2.13) again, we have(

∆̃ − ∂

∂t

)
(tr h(t) + tr h−1(t))

= 2tr(−√−1Λ∂̄Ehh
−1∂Kh) + 2tr(−√−1Λ∂̄Eh

−1h∂Hh−1) ≥ 0.

So we have proved the following proposition.

Proposition 2.5. LetH(t),K(t) be two solutions of theHermitian–Einstein flow(Eq. (2.6)),
then (

∆̃ − ∂

∂t

)
σ(H(t),K(t)) ≥ 0. (2.15)

Proposition 2.6. LetH(x, t) be a solution of the Hermitian–Einstein flow(Eq. (2.6))with
the initial metricH0, then(

∆̃ − ∂

∂t

)
lg{tr(H−1

0 H) + tr(H−1H0)} ≥ −2|√−1ΛFH0 − λ Id|H0. (2.16)

Proof. Let h = H−1
0 H , direct calculation shows that(

∆̃ − ∂

∂t

)
tr h = 2tr(

√−1hΛFH0 − λh) + 2tr(−√−1Λ∂̄hh−1∂0h). (2.17)
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(
∆̃ − ∂

∂t

)
tr h−1 = −2tr(

√−1h−1ΛFH0 − λh−1) + 2tr(−√−1Λ∂̄Eh
−1h∂Hh−1).

(2.18)

It is easy to check that[19]

2(trh)−1tr(−√−1Λ∂̄hh−1∂0h) − (tr h)−2|d tr h|2 ≥ 0,

2(trh−1)−1tr(−√−1Λ∂̄h−1h∂Hh−1) − (tr h−1)−2|d tr h−1|2 ≥ 0. (2.19)

From above two inequalities, it is easy to check

(tr h + tr h−1)−1{−2
√−1Λ∂̄hh−1∂0h − 2

√−1Λ∂̄h−1h∂Hh−1}
≥ (tr h + tr h−1)−2|d tr h + d tr h−1|2. (2.20)

Then, we have(
∆̃ − ∂

∂t

)
lg{tr h + tr h−1}

= (tr h + tr h−1)−1
(
∆̃ − ∂

∂t

)
{tr h + tr h−1}

− (tr h + tr h−1)−2|d tr h + d tr h−1|2

= 2(trh + tr h−1)−1tr(
√−1hΛFH0 − λh) − 2(trh + tr h−1)−1

× tr(
√−1h−1ΛFH0 − λh−1) + 2(trh + tr h−1)−1

× {−√−1Λ∂̄hh−1∂0h − √−1Λ∂̄h−1h∂Hh−1}
− (tr h + tr h−1)−2|d tr h + d tr h−1|2 ≥ −2|√−1ΛFH0 − λ Id|H0.

�
Discussing like that in the above proposition, we have

Proposition 2.7. LetH(x) andH0(x) are two Hermitian metric, then

∆̃ lg{tr H−1
0 H + tr H−1H0} ≥ −2|√−1ΛFH0 − λ Id|H0 − 2|√−1ΛFH − λ Id|H.

(2.21)

Corollary 2.8. Let H be a Hermitian–Einstein metric, andH0 be the initial Hermitian
metric, then

∆̃ lg{tr(H−1
0 H) + tr(H−1H0)} ≥ −2|√−1ΛFH0 − λ Id|H0. (2.22)

3. The Hermitian–Einstein flow on compact Hermitian manifolds

Let (M,g) be a compact Hermitian manifold (with possibly non-empty boundary), and
E be a holomorphic vector bundle overM. Let H0 be the initial Hermitian metric onE. If
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M is closed then we consider the following evolution equation

H−1∂H

∂t
= −2(

√−1ΛFH − λ Id), H(t)|t=0 = H0. (3.1)

If M is a compact manifold with non-empty smooth boundary∂M, and the Hermitian metric
g is smooth and non-degenerate on the boundary. For given dataϕ on ∂M we consider the
following boundary value problem:

H−1∂H

∂t
= −2

√−1(ΛFH − λ Id), H(t)|t=0 = H0, H |∂M = ϕ. (3.2)

HereH0 satisfies the boundary condition. From formula (2.9), we know that the above
equations are non-linear strictly parabolic equations, so standard parabolic theory gives
short-time existence:

Proposition 3.1. For sufficiently smallε > 0, the equation(3.1),and(3.2)have a smooth
solution defined for0 ≤ t < ε.

Next we want to prove the long-time existence of the evolution equations (3.1) and (3.2).
Let h = H−1

0 H . By direct calculation, we have∣∣∣∣ ∂∂t (lg tr h)

∣∣∣∣ ≤ 2|√−1ΛFH − λ Id|H, (3.3)

and similarly∣∣∣∣ ∂∂t (lg tr h−1)

∣∣∣∣ ≤ 2|√−1ΛFH − λ Id|H. (3.4)

Theorem 3.2. Suppose that a smooth solutionHt to the evolution equation(3.1) is defined
for 0 ≤ t < T .ThenHt converge inC0-topology to some continuous non-degeneratemetric
HT ast → T .

Proof. Givenε > 0, by continuity att = 0 we can find aδ such that

sup
M

σ(Ht,Ht′ ) < ε,

for 0 < t, t′ < δ. ThenProposition 2.5and maximum principle imply that

sup
M

σ(Ht,Ht′ ) < ε,

for all t, t′ > T − δ. This implies thatHt are uniform Cauchy sequence and converge
to a continuous limiting metricHT . On the other hand, byProposition 2.2, we know
that |√−1ΛFH − λ Id|H are bounded uniformly. Using formulas (3.2) and (3.3), one
can conclude thatσ(H,H0) are bounded uniformly, thereforeH(T ) is a non-degenerate
metric. �

We prove the following lemma in the same way as[3; Lemma 19]and[18; Lemma 6.4].

Lemma 3.3. Let M be a compact Hermitian manifold without boundary(with non-empty
boundary). LetH(t), 0 ≤ t < T , be any one-parameter family of Hermitian metrics on a
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holomorphic bundle E over M(and satisfy Dirichlet boundary condition), and supposeH0
is the initial Hermitian metric. If H(t) converges inC0 topology to some continuous metric
HT as t → T , and if supM |ΛFH |H0 is bounded uniformly in t, thenH(t) are bounded in
C1 and also bounded inLp

2 (for any1 < p < ∞) uniformly in t.

Proof. Let h(t) = H−1
0 H(t). We contend thath(t) are bounded uniformly inC1 topology,

and alsoH(t) are bounded uniformly inC1. If not then for some subsequencetj there are
pointsxj ∈ M with sup|∇0hj| = lj achieved atxj, andlj → ∞, herehj = h(tj).

(a) First we consider the case thatM is a closed manifold. Taking a subsequence we can
suppose that thexj converge to a pointx in M. Then we choose local coordinates
{zα}mα=1 aroundxj and rescaled by a factor ofl−1

j to a ball of radius 1{|w| < 1}, and

pull back the matrixeshj to matrix h̃j via the mapswα = ljzα. With respect to the
rescaled metrics

sup
|w|<1

|∇h̃j| = 1,

is attained at the origin point. By the conditions of the lemma, we know

|ΛF̃j − ΛF̃0| = |h̃−1
j (Λ∂̄∂0h̃j − Λ∂̄h̃jh̃

−1
j ∂0h̃j)| (3.5)

is bounded in{w ∈ Cm||w| < 1}. Sinceh̃j, ∇h̃j are bounded,|Λ∂̄∂0h̃j| are bounded
independent ofj, then|∆h̃j| is also bounded independent ofj. By the properties of
the elliptic operator∆ on Lp spaces,̃hj are uniformly bounded inLp

2 on a small
ball. Takingp > 2m, so thatLp

2 → C1 is compact, thus some subsequence of theh̃j

converge strongly inC1 to h̃∞. But on the other hand the the variation ofh̃∞ is zero,
since the original metrics approached aC0 limit, which contradicts

|∇h̃∞|z=0 = lim
j→∞ |∇h̃j|z=0 = 1.

(b) WhenM is a compact manifold with non-empty boundary∂M. Letdj denote the distance
from xj to the boundary∂M, then there are two cases.
(1) If lim sup djlj > 0, then we can choose balls of radius≤ dj aroundxj and rescaled

by a factor oflj/ε to a ball of radius 1 (whereε < lim sup djlj), pull back the ma-
trixeshj to matrixes̃hj defined on{w ∈ Cm||w| < 1}. With respect to the rescaled
metrics, we have

sup|∇h̃j| = ε,

is attained at the origin. By condition of the lemma, and discussing like that in (a),
we will deduce contradiction.

(2) On the other hand, if lim supdjlj = 0, we may assumexj approach a pointy on the
boundary, and let ˇxj ∈ ∂M such that dist(ˇxj, xj) = dj, alsox̌j approachy. Choose
half-ball of radius 1/lj aroundx̌j and rescale by a factor oflj to the unit half-ball.
In the rescaled picture the pointsxj approachz = 0. After rescaling,|Λ∂̄∂0h̃j|is still
bounded,̃hj is uniformly bounded, and sup|∇h̃j| = 1 is attained at pointxj. Since
h̃j satisfy boundary condition along the face of the half-ball, using elliptic estimates
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with boundary, and discussing like that in (a), we can also deduce contradiction.
From the above discuss, we know thatht are uniformly bounded inC1, alsoH(t) are
uniformly bounded inC1 topology. Using formula (2.5) together with the bounds
on h(t), |ΛFH |, and∇0h show thatΛ∂̄∂0h are uniformly bounded. Elliptic esti-
mates with boundary conditions show thath(t) (alsoHt) are uniformly bounded
in L

p
2.

�

Theorem 3.4. The evolution equations(3.1) and (3.2)have a unique solutionH(t) which
exists for0 ≤ t < ∞.

Proof. Proposition 3.1guarantees that a solution exists for a short time. Suppose that
the solutionH(t) exists for 0≤ t < T . By Theorem 3.2, H(t) converges inC0 to a non-
degenerate continuous limit metricH(T ) ast → t. FromProposition 2.4and the maximum
principle, we conclude that|√−1ΛFH − λ Id|H are bounded independently oft. More-
over, |ΛFH |2H0

are bounded independently oft. Hence byLemma 3.3, H(t) are bounded

in C1 and also bounded inLp
2 (for any 1< p < ∞) uniformly in t. Since the evolution

equations (3.1) and (3.2) is quadratic in the first derivative ofH we can apply Hamil-
ton’s method[7] to deduce thatH(t) → H(T ) in C∞, and the solution can be continued
pastT. Then the evolution equations (3.1) and (3.2) have a solutionH(t) define for all
time.

By Proposition 2.5and maximum principle, it is easy to conclude the uniqueness of the
solution. �

Remark. It should be mentioned that the theorem of Li and Yau[13] give the existence of a
λ-Hermitian–Einstein metric in a stable bundle over a closed Gauduchon manifold, where
real constantλ depending on the slope of the bundle with respect to the Gauduchon metric;
Buchdahl[1] proves the same result for arbitrary surfaces independently; the book written
by Lübke and Teleman[12] is a good reference for this field. WhenM is a closed Hermitian
manifold, the solution of equation (3.1) usually will not convergence to a Hermitian–Einstein
metric. However, in the next section, we will show that the solution of Eq. (3.2) always
converges to a Hermitian–Einstein metric which satisfies the boundary condition.

4. The Dirichlet boundary problem for Hermitian–Einstein metric

In this section we will consider the case whenM is the interior of compact Hermitian
manifoldM̄ with non-empty boundary∂M, and the Hermitian metric is smooth and non-
degenerate on the boundary, holomorphic vector bundleE is defined over̄M. We will discuss
the Dirichlet boundary problem for Hermitian–Einstein metric by using the heat equation
method to deform an arbitrary initial metric to the desired solution. The main points in the
discussion are similar with that in[4] and[18]. For given dataϕ on ∂M we consider the
evolution equation (3.2). ByTheorem 3.4, we know there exists a unique solutionH(t) of
theEq. (3.2). The aim of this section is to prove thatH(t) will converge to the Hermitian–
Einstein metric which we want.
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By direct calculation, one can check that

|∇Hθ|2H ≥ |∇|θ|H |2

for any sectionθ in End(E). Then, using formula (2.10), we have(
∆̃ − ∂

∂t

)
|√−1ΛFH − λ Id|H ≥ 0 (4.1)

We first solve the following Dirichlet problem onM [20, Chapter 5, proposition 1.8]:

∆̃v = −|√−1ΛFH0 − λ Id|H0, v|∂M = 0. (4.2)

Settingw(x, t) = ∫ t

0 |√−1ΛFH − λ Id|H (x, s) ds − v(x). From Eqs. (4.1) and (4.2), and
the boundary condition satisfied byH implies that, fort > 0, |√−1ΛFH − λ Id|H (x, t)
vanishes on the boundary ofM, it is easy to check thatw(x, t) satisfies(

∆̃ − ∂

∂t

)
w(x, t) ≥ 0, w(x,0) = −v(x), w(x, t)|∂M = 0. (4.3)

By the maximum principle, we have∫ t

0
|√−1ΛFH − λ Id|H (x, s) ds ≤ sup

y∈M
v(y), (4.4)

for anyx ∈ M, and 0< t < ∞.
Let t1 ≤ t ≤ t2, and leth̄(x, t) = H−1(x, t1)H(x, t). It is easy to check that

h̄−1∂h̄

∂t
= −2(

√−1ΛFH − λ Id). (4.5)

Then we have

∂

∂t
log tr(h̄) ≤ 2|√−1ΛFH − λ Id|H.

From the above formula, we have

tr(H−1(x, t1)H(x, t)) ≤ r exp

(
2
∫ t

t1

|√−1ΛFH − λ Id|H ds

)
. (4.6)

We have a similar estimate for tr(H−1(x, t)H(x, t1)). Combining them we have

σ(H(x, t), H(x, t1)) ≤ 2r

(
exp

(
2
∫ t

t1

|√−1ΛFH − λ Id|H ds

)
− 1

)
. (4.7)

From Eqs. (4.4) and (4.7), we know thatH(t) converge inC0 topological to some continuous
metricH∞ ast −→ ∞. UsingLemma 3.3again, we know thatH(t) are bounded inC1 and
also bounded inLp

2 (for any 1< p < ∞) uniformly in t. On the other hand,|H−1∂H/∂t| is
bounded uniformly. Then, the standard elliptic regularity implies that there exists a subse-
quenceHt −→ H∞ in C∞ topology. From formula (4.4), we know thatH∞ is the desired
Hermitian–Einstein metric satisfying the boundary condition. FromProposition 2.4and the
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maximum principle, it is easy to conclude the uniqueness of the solution. So we have proved
the following theorem.

Theorem 4.1. Let E be a holomorphic vector bundle over the compact Hermitian man-
ifold M̄ with non-empty boundary∂M. For any Hermitian metricϕ on the restriction
of E to ∂M there is a unique Hermitian–Einstein metric H on E such thatH = ϕ over
∂M.

5. Hermitian–Einstein flow over complete Hermitian manifolds

LetMbe a complete, non-compact Hermitian manifold without boundary, in this case, we
will simply sayM is a complete Hermitian manifold. LetEbe a holomorphic vector bundle
of rankr overM with a Hermitian metricH0. In this section we are going to prove a long-
time existence for the Hermitian–Einstein flow over any complete manifold under some
conditions on the initial metricH0. As usually, we use the compact exhaustion construction
to prove the long-time existence.

Let {Ωi}∞i=1 be an exhausting sequence of compact sub-domains ofM, i.e. they satisfy
Ωi ⊂ Ωi+1 and∪∞

i=1Ωi = M. By Theoremes 3.4 and 1.1, we can find Hermitian metrics
Hi(x, t) onE|Ωi for eachi such that

H−1
i

∂Hi

∂t
= −2(

√−1ΛFHi − λ Id), Hi(x,0) = H0(x),

Hi(x, t)|∂Ωi = H0(x), lim
t→∞(

√−1ΛFHi − λ Id) = 0. (5.1)

Suppose that there exists a positive numberC0 such that|√−1ΛFH0 − λ Id|H0 ≤ C0 on
any points ofM. Denotehi = H−1

0 Hi, direct calculation shows that∣∣∣∣ ∂∂t lg tr hi

∣∣∣∣ ≤ 2|√−1ΛFHi − λ Id|Hi,∣∣∣∣ ∂∂t lg tr h−1
i

∣∣∣∣ ≤ 2|√−1ΛFHi − λ Id|Hi, (5.2)

By Proposition 2.2and the maximum principle, we have

sup
Ωi×[0,∞)

|√−1ΛFHi − λ Id|Hi ≤ C0. (5.3)

Integrating Eq. (5.2) along the time direction,

| lg tr hi(x, t) − lg r| =
∣∣∣∣
∫ t

0

∂

∂s
(lg tr hi(x, s)) ds

∣∣∣∣ ≤ 2C0t.

Then we have

sup
Ωi×[0,T ]

tr hi ≤ r exp(2C0T ), inf
Ωi×[0,T ]

tr hi ≥ r exp(−2C0T ), (5.4)
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and

sup
Ωi×[0,T ]

tr h−1
i ≤ r exp(2C0T ), inf

Ωi×[0,T ]
tr h−1

i ≥ r exp(−2C0T ), (5.5)

This implies that

sup
Ωi×[0,T ]

σ(H0, Hi) ≤ 2r(exp(2C0T ) − 1), (5.6)

and

(r exp(2C0T ))−1 Id ≤ hi(x, t) ≤ r exp(2C0T ) Id (5.7)

for any (x, t) ∈ Ωi × [0, T ]. In particular, over any compact subsetΩ, for i sufficiently large
such thatΩ ⊂ Ωi, we have theC0-estimate

sup
Ω×[0,T ]

σ(H0, Hi) ≤ 2r(exp(2C0T ) − 1). (5.8)

Without loss of generality we can assume thatΩ = Bo(R), hereB0(R) denotes the geodesic
ball of radiusR with center at a fixed pointo ∈ M. First, we want to show that there
exists a subsequence of{Hi} converging uniformly to a Hermitian metricH∞(x, t) on
Bo(R) × [0, T/2].

Direct calculation as before shows that overΩi × [0, T ]

∆̃ tr hi = −2Λ∂̄∂tr hi = −2tr(hi(
√−1ΛFHi − λ Id)) + 2tr(hi(

√−1ΛFH0 − λ Id))

− 2tr(
√−1Λ∂̄hih

−1
i ∂H0hi) ≥ −C1 + C2e(hi). (5.9)

Heree(hi) = −2tr(
√−1Λ∂̄Ehi∂H0hi), C1 andC2 are positive constants depending only on

C0 andT, and we have used formulas (2.12), (5.3), (5.4), and (5.7). Choosingi sufficiently
larger such thatBo(4R) ⊂ Ωi, let ψ be a cut-off function which equal 1 inBo(2R) and is
supported inBo(4R). Now multiply the above inequality byτiψ2 and integrate it overM.
Then

C2

∫
M

tr(hi)ψ
2e(hi) ≤ C1

∫
M

tr hiψ
2 +

∫
M

tr hiψ
2∆̃tr hi

= C1

∫
M

tr hiψ
2 +

∫
M

tr hiψ
2∆ tr hi +

∫
M

tr hiψ
2〈V,∇ tr hi〉

≤ C1

∫
M

tr hiψ
2 + 8

∫
M

(tr hi)
2|∇ψ|2 + 8

∫
M

(tr hi)
2ψ2|V |2.

Using Eq. (5.4) again, we obtain the following estimate:∫ T

0

∫
Bo(2R)

e(hi) ≤ C3. (5.10)

HereC3 is a uniform constant depending onC0, T R, andV.
Becausee(hi) contain all the squares of the first order derivatives (space direction)

of hi, hi have uniformC0 bound, and also∂/∂thi are uniformly bounded. So, the above
inequality implies thathi are uniformly bounded inL2

1(Bo(2R) × [0, T ]). Using the fact
thatL2

1(Bo(2R) × [0, T ]) is compact inL2(Bo(2R) × [0, T ]), by passing to a subsequence
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which we also denoted by{Hi}, we have that theHi converge inL2(Bo(2R) × [0, T ]). Given
any positive numberε, we have∫ T

0

∫
Bo(2R)

σ2(Hj,Hk) ≤ ε, (5.11)

for j, k sufficiently large.
For further discussion, we need the following lemmas. The following Sobolev inequality

had been proved by Saloff-Coste[17, theorem 3.1].

Lemma 5.1. LetMm be an m-dimensional complete non-compact Riemannian manifold,
andBx(r) be a geodesic ball of radius r and centered at x. Suppose that−K ≤ 0 is the
lower bound of the Ricci curvature ofBx(r). If m > 2, there exists C depending only on m,
such that(∫

Bx(r)
|f |2q

)1/q

≤ exp (C(1 +
√
Kr))Vol(Bx(r))−2/mr2

×
(∫

Bx(r)
(|∇f |2 + r−2|f |2)

)
, (5.12)

for anyf ∈ C∞
0 (Bx(r)),whereq = m/(m − 2).Form ≤ 2, the above inequality holds with

m replaced by any fixedm′ > 2,and the constant C also depending only onm′.

From the above Sobolev inequality (5.12) and the standard Moser iteration argument, it
is not hard to conclude the following mean-value type inequality which can be seen as a
generalization of the mean-value inequality of Li and Tam[11, theorem 1.2]for the non-
negative sub-solution to the heat equation. We should point out that the elliptic case of the
following mean-value inequality had been discussed in[14, p. 344].

Lemma 5.2. LetMm be an m-dimensional(complex) complete non-compact Hermitian
manifold without boundary, andBo(2R) be a geodesic ball, centeredat o ∈ M of radius
2R. Suppose thatf (x, t) be a non-negative function satisfying(

∆̃ − ∂

∂t

)
f ≥ −C5f (5.13)

onBo(2R) × [0, T ]. If −K ≤ 0 is the lower bound of the Ricci curvature ofBo(2R), then
for p > 0, there exists positive constantsC6 andC7 depending only onC5,m, R, K, p, T,
and the difference vector fields V, such that

sup
Bo(1/4R)×[0,T/4]

fp ≤ C6

∫ T

0

∫
Bo(R)

fp(y, t) dy dt + C7 sup
Bo(R)

fp(·,0). (5.14)

Lemma 5.3. LetMm be an m-dimensional(complex) complete non-compact Hermitian
manifold without boundary,andBo(2R) be a geodesic ball, centered ato ∈ M of radius2R.
Suppose thatf (x, t) be a non-negative function satisfyingEq. (5.13)onBo(2R) × [0, T ].
If −K ≤ 0 is the lower bound of the Ricci curvature ofBo(2R), then forp > 0, there exists
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a positive constantC8 depending only onC5,m, R, K, p, δ, η, T, and V such that

sup
Bo((1−δ)R)×[ηT,(1−η)T ]

fp ≤ C8

∫ T

0

∫
Bo(R)

fp(y, t) dy dt, (5.15)

where0 < δ, η < 1/2.

Proof. Setting 0< η1 < η2 ≤ 1/2,0 < δ1 < δ2 ≤ 1, and letψ1 ∈ C∞
0 (Bo(2R)) be the

cut-off function

ψ1(x) =
{

1; x ∈ Bo((1 − δ2)R)

0; x ∈ Bo(2R) \ (Bo(1 − δ1)R)

0 ≤ ψ1(x) ≤ 1 and|∇ψ1| ≤ 2(δ2 − δ1)−1R−1. Let

ψ2(t) =
{

1; η2T < t < (1 − η2)T

0; t < η1T,or, t > (1 − η1)T
,

where 0≤ ψ2(t) ≤ 1 and|∂ψ2/∂t| ≤ 2(η2 − η1)−1T−1. Multiplying fq−1ψ2 on both sides
of the inequality (5.13) (q > 1), hereψ(x, t) = ψ1(x)ψ2(t), and integrate it overM. Inter-
grating by parts, and using the Schwartz inequality, we have:

2(q − 1)

q

∫
M

|∇f
q
2 |2ψ2 +

∫
M

∂(fqψ2)

∂t
≤
∫
M

(
qC9ψ

2 + 4q

q − 1
|∇ψ|2 + 2ψ

∂ψ

∂t

)
fq.

Integrating along the time direction, we have∫ T

0

∫
M

|∇fq/2|2ψ2 ≤ q

2(q − 1)

(∫ T

0

∫
M

(
qC9ψ

2 + 4q

q − 1
|∇ψ|2 + 2ψ

∂ψ

∂t

))
fq.

(5.16)

SinceM is a complete manifold, we can use the Sobolev inequality (5.12). Combining
with Hölder inequality, and the above inequality, we have:∫ (1−η2)T

η2T

∫
Bo((1−δ2)R)

fq(1+2/m)dx dt ≤ C∗

{(
1

η2 − η1

)(
1

δ2 − δ1

)2

q

(
q

2(q − 1)

)2

×
(∫ (1−η1)T

η1T

∫
Bo((1−δ1)R)

fqdxdt

)}1+2/m

.

(5.17)

where positive constantC∗ depending only onm, R, K, T and the vector fieldV.
Using Moser’s iteration, the result follows. The iteration arguments inLemmas 5.2
and 5.3are similar, the only difference is the choice of cut-off functionψ2(t) in the
above. �
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On the other hand, fromProposition 2.5, we know thatσ(Hj,Hk) satisfy

(
∆̃ − ∂

∂t

)
σ(Hj,Hk) ≥ 0.

Using Eqs. (5.11) and (5.14), we have

sup
Bo(R)×[0,T/2]

σ2(Hj,Hk) ≤ C4ε. (5.18)

HereC4 is a positive constant depending only onC0, R, T, and the bound of sectional
curvature onBo(2R). From Eq. (5.18), we can conclude that, by taking a subsequence,Hi

converges uniformly to a continuous Hermitian metricH∞ onBo(R) × [0, T/2].
Next, we will use the aboveC0 to obtain theC1-estimate onBo(R) × [0, T/2], the method

we used is similar to that in[2, section 2.3]. For any pointx ∈ Bo(2R), choosing a small
ballBx(r) such that the bundleE can be trivialized locally, and let{eα} be the holomorphic
frame ofE. So, a metricHi can be written as a matrix which also is denoted byHi onBx(r).
The complex metric connection with respect toHi can be written as following

Ai = H−1
i ∂Hi

and the curvature form

FHi = ∂̄(H−1
i ∂Hi).

Choosing a real coordinate{yl} onBx(r) and centered atx. Denoteρl = H−1
i dHi(∂/∂yl). It

is easy to check that

−2
√−1Λ∂̄∂Hiρl − ∂

∂t
ρl = −ρlH

−1
i

∂Hi

∂t
+ H−1

i

∂Hi

∂t
ρl (5.19)

on Bx(r). In fact, this follows from Eq. (5.1) by considering the one-parameter fam-
ily of solutions obtained by translating in the direction of∂/∂yl, Hs

i (y1, . . . , y2m) =
Hi(y1, . . . , yl + s, . . . , y2m). It follows that the square norm|ρl|2Hi

= trρlH
−1
i ρ̄l

∗Hi sat-
isfy (

∆̃ − ∂

∂t

)
|ρl|2Hi

≥ 0 (5.20)

onBx(r/2). On the other hand, there must exist constantC9 andC10 such that

C9 Id ≤
{
g

(
∂

∂yl
,

∂

∂yl

)}
≤ C10 Id

onBx(r), whereg is the Hermitian metric ofM. So, we have

C9

∑
l

∣∣∣∣H−1
i

∂Hi

∂yl

∣∣∣∣
Hi

≤ |H−1
i ∇Hi|2Hi

≤ C10

∑
l

∣∣∣∣H−1
i

∂Hi

∂yl

∣∣∣∣
Hi



330 Zhang Xi / Journal of Geometry and Physics 53 (2005) 315–335

Using formulas (5.10) and (5.20), andLemma 5.2, we can conclude that there exists a
positive constantC11 which is independently ofi such that

sup
Bo(r/4)×[0,T/4]

|H−1
i ∇Hi|2H0

≤ C11. (5.21)

Sincex is arbitrary, so we can conclude that theC1-norm ofHi is bounded uniformly on
anyBo(R) × [0, T/4]. By theC0-estimate Eq. (5.8) and the aboveC1-estimate, the standard
parabolic theory shows that, by passing to a subsequence,Hi converges uniformly over any
compact subset ofM × [0,∞) to a smoothH∞ which is a solution of the Hermitian–
Einstein flow Eq. (2.6) on the whole manifold. Therefore we complete the proof of the
following theorem.

Theorem 5.4. Let M be a complete non-compact Hermitian manifold without boundary,
let E be a holomorphic vector bundle over Mwith initial HermitianmetricH0.Suppose that
there exists a positive numberC0 such that|

√−1ΛFH0 − λ Id| ≤ C0 everywhere, where
λ is a real number, then the Hermitian–Einstein flow

H−1∂H

∂t
= −2(

√−1ΛFH − λ Id), H(x,0) = H0,

has a long-time solution onM × [0,∞).

6. H-E metrics over complete Hermitian manifolds

In this section, we consider the existence of the Hermitian–Einstein metrics on some
complete Hermitian manifolds. As above, complete means complete, non-compact, and
without boundary. Since we have established the global existence of the Hermitian–Einstein
flow on any complete Hermitian manifold, one could hope that the Hermitian–Einstein flow
will converge to a Hermitian–Einstein metric under some assumptions. But, in the following
we will adapt the direct elliptic method, the argument is similar to that Ni and Ran are used
in the Kähler case[15].

Let {Ωi}∞i=1 be a exhausting sequence of compact sub-domains ofM, andH0 be a
Hermitian metric on the holomorphic vector bundleE. By Section 4, we know that the
following Dirichlet problem is solvable onΩi, i.e. there exists a Hermitian metricHi(x)
such that

√−1ΛFHi = 0, for x ∈ Ωi, Hi(x)|∂Ωi = H0(x). (6.1)

In order to prove that we can pass to limit and eventually obtain a solution on the whole mani-
foldM, we need to establish some estimates. The key is theC0-estimate. FromCorollary 2.8,
we have the following Bochner type inequality.

∆̃ lg(tr hi + tr h−1
i ) ≥ −2|√−1ΛFH0 − λ Id|H0, for x ∈ Ωi,

lg(tr hi + tr h−1
i )|∂Ωi = lg 2r. (6.2)
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Herehi = H−1
0 Hi. Let σ̃i = σ̃(H0, Hi) = lg(tr hi + tr h−1

i ) − lg 2r, we have

∆̃σ̃i ≥ −2|√−1ΛFH0 − λ Id|H0, for x ∈ Ωi, σ̃i|∂Ωi = 0. (6.3)

Next, we impose three invertibility conditions on the holomorphic Laplace operator between
suitably chosen function spaces.

Condition 1. There exists positive numberp > 0 such that for every non-negative function
f ∈ Lp(M) ∩ C0(M), there exists a non-negative solutionu ∈ C0(M) of

∆̃u = −f.

Condition 2. There exists positive numberµ > 0 such that for every non-negative function
f ∈ C0

µ(M), there exists a non-negative solutionu ∈ C0(M) of

∆̃u = −f.

Condition 2′. There exists positive numberµ > 0,µ′ > 0 such that for every non-negative
functionf ∈ C0

µ(M), there exists a non-negative solutionu ∈ C0
µ′ (M) of

∆̃u = −f,

whereC0
µ(M) denote the space of continuous functionsf which satisfy that there exists

x0 ∈ M and a constantC(f ) such that|f (x)| ≤ C(f )(1 + dist(x, x0))−µ.

Theorem 6.1. Assume that M is a complete Hermitian manifold such that for the holo-
morphic Laplace operator̃∆ on M, Condition 6is satisfied with positive numberp > 0 (or
Condition 6is satisfiedwith positive numberµ).Let(E,H0)beaholomorphic vector bundle
with a Hermitian metricH0. Assume that‖√−1ΛFH0 − λ Id‖H0 ∈ Lp(M) for some real
numberλ (or ‖√−1ΛFH0 − λ Id‖H0 ∈ C0

µ(M)), then there exists a Hermitian–Einstein
metric H on E. If M satisfiesCondition 6,and the initial Hermitian metricH0 satisfies
‖√−1ΛFH0 − λ Id‖H0 ∈ C0

µ(M), then there exists a unique Hermitian–Einstein metric H

with σ̃(H0, H) ∈ C0
µ′ (M), hereσ̃ is defined in(6.3).

Proof. Using the maximum principle, from Condition 6 (or Condition 6) and formula
(6.3), we can conclude that the Donaldson’s distanceσi = σ(H0, Hi) betweenHi andH0
must satisfy

σi ≤ 2r expu − 2r. (6.4)

for any x ∈ Ωi. Whereu satisfies∆̃u = −2|√−1ΛFH0 − λ Id|H0. From the aboveC0-
estimates, and discussing like that in the proof ofTheorem 5.4, we can obtain a uniform
C1-estimates ofHi. Then standard elliptic theory shows that, by passing a subsequence,Hi

converge uniformly over any compact sub-domain ofM to a smooth Hermitian metricH
satisfying

√−1ΛFH − λ Id = 0.
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WhenM satisfies Condition 6, using the maximum principle, the Hermitian–Einstein
metric H which we obtained in the above must satisfyσ̃(H0, H) ≤ u. So, σ̃(H0, H) ∈
C0

µ′ (M).
Finally, we prove the uniqueness of the Hermitian–Einstein metric with the mentioned

properties. LetH̃ be another Hermitian–Einstein metric for the same real numberλ on the
bundleE and satisfies̃σ(H0, H̃) ∈ C0

µ′ (M). Hence for everyε outside a sufficiently large
geodesic ballBo(R) around an arbitraryo ∈ M, we have

σ(H0, H̃) ≤ ε, and σ(H0, H) ≤ ε.

By the definition of the Donaldson’s distanceσ, and the above inequalities, it is not hard to
conclude that:

σ(H, H̃) ≤ 2r

(
1 +

√
ε − 1

4
ε2 + 1

2
ε

)2

− 2r

outside the geodesic ballBo(R). On the other hand, fromProposition 2.4, we have:

∆̃σ(H, H̃) ≥ 0.

By the maximum principle this impliesσ(H, H̃) ≤ 2r(1 +
√

ε − 1/4ε2 + 1/2ε)2 − 2r on
all ofM for everyε > 0 and henceσ(H, H̃) ≡ 0. This impliesH ≡ H̃ . �
Remark.Condition 6 is introduced by Grunau and Kühnel in[5] where they discuss the
existence of holomorphic map from complete Hermitian manifold, and they had constructed
some examples which satisfy Condition 6. Next, with the help of the following two defini-
tions, we want to discuss Condition 6 on the holomorphic Laplace operator.
Definition 6.2 (Positive spectrum). LetM be a complete Hermitian manifold; we say the
holomorphic Laplace operator̃∆ has positive first eigenvalue if there exists a positive
numberc such that for any compactly supported smooth functionφ one has∫

M

(−∆̃φ)φ ≥ c

∫
M

φ2. (6.5)

The supremum of these numberscwill be denoted byλ̃1(M).
Definition 6.3 (L2-Sobolev inequality). LetM be anm-dimensional(complex) complete
Hermitian manifold, we say the holomorphic Laplace operator∆̃ satisfiesL2-Sobolev
inequality if there exists a constantS(M) such that for any compact supported smooth
functionφ one has∫

M

(−∆̃φ)φ ≥ S(M)(
∫
M

φ4m/(2m−2))(2m−2)/2m (6.6)

Lemma 6.4. Let M be a complete Hermitian manifold, and the holomorphic Laplace
operator∆̃ has positive first eigenvaluẽλ1(M).Then for a non-negative continuous function
f the equation

∆̃u = −f
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has a non-negative solutionu ∈ W
2,2m
loc ∩ C

1,α
loc (M)(0 < α < 1) if f ∈ Lp(M) for some

p ≥ 2.

Proof. We first solve the following Dirichlet problem onΩi [20, Chapter 5, proposition 1.8]

∆̃ui = −f, ui|∂Ωi = 0. (6.7)

HereΩi is an exhaustion ofM. First, by the maximum principle, we know thatui ≥ 0. Now
multiplying u

p−1
i on both-sides of the equation and integrating by parts we have that∫

Ωi

fu
p−1
i =

∫
Ωi

(−∆̃ui) · up−1
i = (p − 1)

∫
Ωi

u
p−2
i |∇ui|2 −

∫
Ωi

u
p−1
i 〈V,∇ui〉.

(6.8)

On the other hand, using the assumption thatλ̃1(M) > 0,we have

λ̃i(M)
∫
Ω1

u
p
i ≤

∫
Ωi

(−∆̃u
p/2
i )up/2

i =
(p

2

)2
∫
Ωi

u
p−2
i |∇ui|2 − p

2

∫
Ωi

u
p−1
i 〈V,∇ui〉

(6.9)

Adding Eqs. (6.8) and (6.9) we have

p

2

∫
Ωi

fu
p−1
i ≥ p

2

(p
2

− 1
)∫

Ωi

u
p−2
i |∇ui|2 + λ̃1(M)

∫
Ωi

u
p
i . (6.10)

From the above inequality, using Hölder inequality, we have(∫
Ωi

u
p
i

)1/p

≤ p

2λ̃1(M)

(∫
M

fp

)1/p

. (6.11)

Using the interiorLp estimates for the linear elliptic equation([6], theorem 9.11)we know
that, over a compact sub-domainΩ, there will be a uniform bound for‖ui‖W2,p(Ω). There-
fore, using Rellich’s compactness theorem, by passing to a subsequence we know thatui

will converge to a solutionu ∈ W
2,p
loc (M) on the manifoldM, and the standard elliptic theory

can show thatu ∈ C
1,α
loc (M). �

By simply replacing the Poincare (Eq. (6.5)) inequality by the Sobolev inequality (Eq.
(6.6)) in the proof of above lemma, we can prove the following lemma.

Lemma 6.5. Let M be an m-dimensional(complex) complete Hermitian manifold, and
the holomorphic Laplace operator̃∆ satisfy theL2-Sobolev inequality(6.6).Then for a
non-negative continuous function f the equation

∆̃u = −f

has a non-negative solutionu ∈ W
2,2m
loc ∩ C

1,α
loc (M)(0 < α < 1) if f ∈ Lp(M) for somem >

p ≥ 2.
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The above two lemmas show that when the holomorphic Laplace operator∆̃ has positive
first eigenvalue (or satisfies theL2 Sobolev inequality) then Condition 6 must be satisfied
for some positive numberp.

Corollary 6.6. Let M be a complete Hermitian manifold, and the holomorphic Laplace
operator∆̃ has positive first eigenvaluẽλ1(M).Let(E,H0) be a holomorphic vector bundle
with HermitianmetricH0.Assume that‖√−1ΛFH0 − λ Id‖ ∈ Lp(M) for somep ≥ 2and
real numberλ. Then there exists a Hermitian–Einstein metric H on E.

Corollary 6.7. Let M be an m-dimensional(complex) complete Hermitian manifold, and
the holomorphic Laplace operator̃∆ satisfy theL2-Sobolev inequality(6.6).Let(E,H0) be
a holomorphic vector bundle with HermitianmetricH0.Assume that|√−1ΛFH0 − λ Id| ∈
Lp(M) for somep ∈ [2,m/2) and real numberλ. Then there exists a Hermitian–Einstein
metric H on E.
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