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Abstract

In this paper, we prove the long-time existence of the Hermitian—Einstein flow on a holomorphic
vector bundle over a compact Hermitian (noaffer) manifold, and solve the Dirichlet problem for
the Hermitian—Einstein equations. We also prove the existence of Hermitian—Einstein metrics for
holomorphic vector bundles on a class of complete non-compact Hermitian manifolds.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let (M, g) be a Hermitian manifold with Hermitian metrig andE be a rankr holo-
morphic vector bundle ovevl. Given any Hermitian metriél on the holomorphic vector
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bundleE there exists one and only one complex metric connectign If the curvature
form Fy of Ay satisfies

V=1AFy = A Id, (1.1)

thenH will be called a Hermitian—Einstein metric, whekeis a real number. After the
pioneering work of KobayasHhB,9], the relation between the existence of Hermitian—
Einstein metrics and stable holomorphic vector bundles over cloadteKmanifolds is by

now well understood due to the works of Narasimhan and Segi&dirDonaldsor3], Siu

[19], Uhlenbeck and Ya[R1,22], and others. Later, in Rg#] the Dirichlet boundary value
problem was solved for Hermitian—Einstein metrics over compéadtlét manifolds with
non-empty boundary. In this paper, we study the existence of Hermitian—Einstein metrics
for holomorphic vector bundles over Hermitian (noétker) manifolds. We should point

out that if (M, g) is non-Kahler then the basic#hler identities

P = —v/—1Ad,; ¥ = /—1Ad,. (1.2)

do not hold. So the non-&hler case is analytically more difficult than théler case.

We first investigate the associated parabolic system, i.e. Hermitian—Einstein flow over
compact Hermitian manifolds, and we prove the long-time existence of the Hermitian—
Einstein flow. In general, the Hermitian—Einstein flow does not converge to a Hermitian—
Einstein metric whem is a closed Hermitian manifold without boundary. (In this case,
the stability of holomorphic vector bundle may ensure the convergence of the Hermitian—
Einstein flow under some conditiofs12,13,19]. However we prove the solvability of the
Dirichlet problem for Hermitian—Einstein metric over compact Hermitian manifolds with
smooth boundary.

Theorem 1.1. Let E be a holomorphic vector bundle over the compact Hermitian manifold
M with non-empty smooth bounda#y/. For any Hermitian metrigy on the restriction of
E to oM there is a unique Hermitian—Einstein metric H on E such tHat ¢ overaM.

In the second part of this paper, we study the Hermitian—Einstein equation on holomor-
phic vector bundles over complete Hermitian manifolds; here complete means complete,
non-compact and without boundary. &ection 5 we prove the long-time existence of the
Hermitian—Einstein flow on any complete Hermitian manifold under the assumption that
the initial metric has bounded mean curvature. It is reasonable that the long-time solution
will converge to a Hermitian—Einstein metric under some assumptions on manifold and
initial metric. But, inSection 6 we adapt the direct elliptic method, usimgeorem 1.%and
compact exhaustion to prove the existence of Hermitian—Einstein metric on some complete
Hermitian manifolds.

2. Preliminary results

Let (M, g) be a compact Hermitian manifold, afitibe a rankr holomorphic vector
bundle oveiM. Denote byw the Kahler form, and define the operataras the contraction
with o, i.e. fora € 2Y1(M, E), then

Ao = (o, w). (2.1)
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A connectionA on the vector bundl& is called Hermitian—Einstein if it is integrable and
the corresponding curvature forRy satisfies the following Einstein condition:

V—1AFs = A 1d,

wherea is some real constant. Whem( g) is a Kahler manifold. We know that the con-
nectionA must be Yang-Mill connection. So in this cageis also called Hermitian—Yang-
Mills.

Let H be a Hermitian metric on holomorphic vector bunéieand denote the holo-
morphic structure byig, then there exists a canonical metric connection which is de-
noted byAy. Taking a local holomorphic basig,(1 < « < r), the Hermitian metridd
is a positive Hermitian matrix{,5)1<«,g<- Which can also be denoted Iy for sim-
plicity; here H,z = H(eq, eg). In fact, the complex metric connection can be written as
following:

Ay = H19H, (2.2)
and the curvature form:
Fy = 0Ay = d(H Y0H). (2.3)

In the literature sometimes the connection is writterv@s){ —* because of the reversal of
the roles of the row and column indices.

Definition 2.1. If a Hermitian metricH on E, and the corresponding canonical metric
connectiond g is Hermitian—Einstein, then the metirit is called a Hermitian—Einstein
metric.

It is well known that any two Hermitian metridd andK on bundleE are related by
H = Kh, whereh = K~1H € 2%M, End(E)) is positive and self-adjoint with respect to
K. Itis easy to check that

Ay — Ag = h™Yakh, (2.4)
Fy — Fx = a(h~Yagh). (2.5)

Let Hp be a Hermitian metric o&. Consider a family of Hermitian metrifl (r) on E with
initial metric H(0) = Ho. Denote byA () and Fp(,) the corresponding connections and
curvature forms, denote(r) = Hng(t). When there is no confusion, we will omit the
parametet and simply writeH, Ay, Fg, h for H(t), Anq), Fu@, h(t), respectively. The
Hermite—Einstein evolution equation is

_10H —
We also call it the Hermitian—Einstein flow. Choosing local complex coordirfatgs,; on
M, as in[10], we define the holomorphic Laplace operator for functions

.

Af = —2J/=1A33f = 2g"f'8 Tt 2.7)
7" 02
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where @'7) is the inverse matrix of the metric matrix;¢). As usual, we denote the Beltrami—
Laplacian operator byt. The difference of the two Laplacians is given by a first order
differential operator as follows

(A= A)f = (V,V [, (2.8)

whereV is a well-defined vector field ol. The holomorphic Laplace operatarcoincides
with the usual Laplace operator if and only if the Hermitian manifalf] ¢) is Kahler. By
taking local holomorphic basis, (1 < @ < r) on bundleE and local, complex coordinates
{z"}l’-"=1 on M, then the Hermitian—Einstein flotg. (2.6)can be written as follows:

oH

o = —2J=1A3H + 2/—1AdHH 10H + 20 H

= AH + 2/=1A0HH *3H + 2).H, (2.6)

whereH denotes the Hermitian matriﬂ(yg)lfa,,gir. From the above formula, we see that
the Hermite—Einstein evolution equation is a non-linear strictly parabolic equation.

Proposition 2.2. Let H(z) be a solution of Hermitian—Einstein flof®.6),then

(aat - A) |V/=1AFy — A Id|% < O. (2.8)
Proof. For simplicity, we denote/—1AFy — A Id = 6. By calculating directly, we have
Al6|%, = —27/—1A00{troH 16" H}
— 2V 1At {900H 0 H — 80H Y350  H + 960H 236 H}
+ 2V =1Atr{0H Y996 H)
= 2Re(—2/—1A006, 6) i + 2050612 + 2/06]2,. (2.8)
and

3 3, - —(d
o (AFn) = g(Aa(h_laoh)) = AJ {at(h‘lah + h_lHo_laHoh)}

— oh oh oh
=A== ) —n =g YoH + H YoHR 1 —
ot ot ot

= A5<aH (h_lz};>) = —2V=1A000y(V—1AFy — L Id)),  (2.9)

whereh = Ho_lH andDy = 0y + 9. Using above formulas, we have
~ 0 —
(A - a;) IW—1AFy — A 1d)% = 23503 + 2/30)%, > 0 (2.10)
O

For further discussion, we will introduce the Donaldson’s “distance” on the space of
Hermitian metrics as follows.
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Definition 2.3. For any two Hermitian metricll, K on bundleE set
o(H, K)=tr HK +tr K~1H — 2rankE. (2.11)

It is obvious that(H, K) > 0 with equality if and only ifH = K. The functiono is not
quite a metric but it serves almost equally well in our problem, moreover the fungtion
compare uniformly withi(, ), whered is the Riemannian distance function on the metric
space, in thaif1(d) < o < f2(d) for monotone functiongi, f2. In particular, a sequence
of metricsH; converges td in the usualC® topology if and only if Sug,o(H;, H) — 0.

Leth = K~1H, and apply—+v/—14 to Eq. (2.5) and taking the trace in the bunélle
we have

tr(v—1h(AFy — AFx)) = — 3 Atr h + tr(—v/—1Adhh~Y8xh). (2.12)
Similarly, we have
tr(v—1h"YAFx — AFp)) = —3Atr h=* + tr(—v/=L1A40h*hdyh ). (2.13)

Sinceh is a positive Hermitian endomorphism, by choosing a local normal coordinates of
M at the point under consideration and a local trivialization of buigieis easy to check
[3,19] that tr(—~/—1A8hh 18 h) is non-negative, so we have the following proposition.

Proposition 2.4. Let H and K be two Hermitian—Einstein metrj¢heno(H, K) is sub-
harmonic with respect to the holomorphic Laplace operaiter

Ao(H, K) > 0. (2.14)

Let H(z), K(f) be two solutions of the Hermitian—Einstein flow (Eg. (2.6)), and denote
h(t) = K(1)~1H(r). Using formulas (2.12) and (2.13) again, we have

(A - ;) (tr h(7) + tr h7L(0))

= 2tr(—/—1Adghh~Yokh) + 2tr(—v/—1Adgh~*hdgh~1) > 0.
So we have proved the following proposition.

Proposition 2.5. Let H(t), K(¢) be two solutions of the Hermitian—Einstein fl(fq. (2.6)),
then

(A - aat) o(H(t), K(1)) > 0. (2.15)

Proposition 2.6. Let H(x, f) be a solution of the Hermitian—Einstein flg&q. (2.6))with
the initial metric Hp, then

~ 9
<A - 8[) g{tr(Hy *H) + tr(H Y Ho)} > —2|v/=1AFpy, — A Id| . (2.16)
Proof. Leth = Hy*H, direct calculation shows that

~ aJ _
(A - Bt) trh = 2tr(v/—1h AFy, — Ah) + 2tr(—v/—1Adhh ™ a0h). (2.17)
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<A - ;) trh™t = —2tr(vV/—1h *AFy, — Ah™Y) + 2tr(—/—1Adgh ™ hogh ™).
(2.18)
It is easy to check thdi9]
2(tr h) " Ltr(—v/—1Adhh~Ydoh) — (tr k) ~?|d tr h|?> > 0,
2(trh )" Hr(—v=140h"*hagh™Y) — (trhi= )2 tr k1% > 0. (2.19)
From above two inequalities, it is easy to check
(trh +tr k=Y Y{—2v/=1A0hh~Yooh — 2/=1A0h  hogh~1}
> (trh+trh ) 2| dtrh +dtrh Y2 (2.20)

Then, we have

~ 9 4
(A — Bt) lg{trh +trh™"}

~ 9
=(trh+trh~Ht (A — m) {trh +trh™1)

—(trh+trh Y2 dtrh +dtrh1?

=2(trh +trh ) Yr(V=1h AFy, — Ah) — 2(trh +tr =)7L
xtr(V=1h"tAFy, — 2h7Y) 4 2(trh + tr A=Y 71
x {—~/—1Adhh~Y30h — V=1A0h~hoyh™1}
—(rh+trh Y 2drh +dr k™2 > 2|/ =1AFy, — i 1d| g,

Discussing like that in the above proposition, we have =
Proposition 2.7. Let H(x) and Hp(x) are two Hermitian metricthen
Alg{tr Hy*H + tr HYHo} > —2|v/—1AFyy — 2 1d|ny — 21V —1AFy — A Id|y.
(2.21)

Corollary 2.8. Let H be a Hermitian—Einstein metriand Hp be the initial Hermitian
metrig then

Alg{tr(Hy *H) + tr(H*Ho)} > —2|v/—=1AFy, — A 1d| . (2.22)

3. The Hermitian—Einstein flow on compact Hermitian manifolds

Let (M, g) be a compact Hermitian manifold (with possibly non-empty boundary), and
E be a holomorphic vector bundle ovier. Let Hy be the initial Hermitian metric ok. If
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M is closed then we consider the following evolution equation
H—lﬁ
ot

If M is a compact manifold with non-empty smooth boundsi; and the Hermitian metric
g is smooth and non-degenerate on the boundary. For giverpdataM we consider the
following boundary value problem:

H_l oH
ot

Here Hy satisfies the boundary condition. From formula (2.9), we know that the above
equations are non-linear strictly parabolic equations, so standard parabolic theory gives
short-time existence:

Proposition 3.1. For sufficiently smalé > 0, the equatiorn(3.1),and(3.2) have a smooth
solution defined fob < 1 < e.

= —2(V=1AFy — 1 Id), H(t)|,—0 = Ho. (3.1)

= 2/—1L(AFy —+Id),  H@)—o=Ho, Hlagyw=9¢. (3.2)

Next we want to prove the long-time existence of the evolution equations (3.1) and (3.2).
Leth = H, “H. By direct calculation, we have

a
‘atﬂg trh)| < 2Iv—1AFy — A ld|y, (3.3)

and similarly

3
g(lg trh Y| < 2lWV=1AFy — A Id|g. (3.4)

Theorem 3.2. Suppose that a smooth solutiéfto the evolution equatiof8.1)is defined
for0 < t < T. ThenH, converge irC%-topology to some continuous non-degenerate metric
Hrast — T.

Proof. Givene > 0, by continuity at = 0 we can find & such that

supo(H;, Hy) < ¢,
M

for 0 < ¢, < 8. ThenProposition 2.5and maximum principle imply that

supo(H;, Hy) < e,
M

for all 7, > T — 4. This implies thatH; are uniform Cauchy sequence and converge
to a continuous limiting metriddy. On the other hand, b¥roposition 2.2 we know
that |«/—1AFy — A Id|y are bounded uniformly. Using formulas (3.2) and (3.3), one
can conclude thad(H, Hp) are bounded uniformly, therefor#(T) is a non-degenerate
metric. O

We prove the following lemma in the same way{dsLemma 19jand[18; Lemma 6.4]

Lemma 3.3. Let M be a compact Hermitian manifold without boundémjth non-empty
boundary. Let H(¢), 0 <t < T, be any one-parameter family of Hermitian metrics on a
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holomorphic bundle E over Nand satisfy Dirichlet boundary conditiprand supposéfy

is the initial Hermitian metriclf H(r) converges irC® topology to some continuous metric
Hr ast — T, and ifsupy |AFy|H, is bounded uniformly in, then H(r) are bounded in
¢! and also bounded in? (foranyl < p < oo) uniformly in t

Proof. Leth(t) = Ho_lH(t) We contend thaii(r) are bounded uniformly id? topology,
and alsoH () are bounded uniformly i€’2. If not then for some subsequengghere are
pointsx; € M with sup|Voh;| = [; achieved ak;, andl; — oo, hereh; = h(t)).

(a) First we consider the case thMtis a closed manifold. Taking a subsequence we can
suppose that the; converge to a poink in M. Then we choose local coordinates

{zo}o_4 aroundx; and rescaled by a factor bJTl to a ball of radius ¥|w| < 1}, and

pull back the matrixes ; to matrix /1, via the mapsw, = [,z,. With respect to the
rescaled metrics

sup |Vh;| =1,

lw]<1

is attained at the origin point. By the conditions of the lemma, we know
|AF; — AFo| = |h;1(Addoh; — Adh ;7 doh )| (3.5)

is bounded infw € C™||w| < 1}. Smcehj, Vh are bounded|Aaaoh | are bounded
independent ofj, then|Ah | is also bounded independent pfBy the properties of
the elliptic operatorA on L” spacesh, are uniformly bounded L% on a small
ball. Takingp > 2m, so thatL'" — Clis compact, thus some subsequence oihtﬁe
converge strongly irC?! to oo But on the other hand the the variation/af, is zero,
since the original metrics approached&limit, which contradicts

|Vhooli=0 = lim |Vh|,—0 = 1.
J—>o0

(b) WhenMis acompact manifold with non-empty boundany. Letd ; denote the distance
from x; to the boundaryM, then there are two cases.

(1) Iflimsupd,l; > 0, then we can choose balls of radiasg!/; aroundx ; and rescaled
by a factor on j/€to aball of radius 1 (where < lim supd ilj) puII back the ma-
trixesh ; to matrlxesh defined on{w € C™||w| < 1}. With respect to the rescaled
metrlcs we have

Sup|Vi;| = e,
is attained at the origin. By condition of the lemma, and discussing like that in (a),
we will deduce contradiction.

(2) Onthe other hand, iflim su@;/; = 0, we may assume; approach a point on the
boundary, and let;" e oM such that disi;, x;) = d;, alsox’; approachy. Choose
half-ball of radius ;kl aroundx’; and rescale by a factor dfto the unit half-ball.
Inthe rescaled picture the pmrxt;approacfz 0. After rescallngLAaaoh lis still
boundedh, is uniformly bounded, and suﬁh | = 1is attained at point;. Since
h ; satisfy boundary condition along the face of the half-ball, using elliptic estimates
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with boundary, and discussing like that in (a), we can also deduce contradiction.
From the above discuss, we know thaare uniformly bounded ia, alsoH (r) are
uniformly bounded inC* topology. Using formula (2.5) together with the bounds
on h(t), |AFg|, andVoh show thatAddgh are uniformly bounded. Elliptic esti-
mates with boundary conditions show thgt) (also H;) are uniformly bounded

in LY. -

Theorem 3.4. The evolution equation@.1) and (3.2have a unique solutioi/(¢) which
exists for0 < r < oo.

Proof. Proposition 3.1guarantees that a solution exists for a short time. Suppose that
the solutionH(r) exists for 0< ¢t < T. By Theorem 3.2 H(z) converges irc? to a non-
degenerate continuous limit met#f(7) ast — ¢. FromProposition 2.4nd the maximum
principle, we conclude thags/—1AFy — A Id|y are bounded independently bfMore-
over, |AFH|§1,O are bounded independently bfHence byLemma 3.3 H(r) are bounded
in C* and also bounded ivié7 (for any 1< p < oo) uniformly in t. Since the evolution
equations (3.1) and (3.2) is quadratic in the first derivativiHoive can apply Hamil-
ton’s method7] to deduce thati(r) — H(T) in C*°, and the solution can be continued
pastT. Then the evolution equations (3.1) and (3.2) have a soluti¢n) define for all
time.

By Proposition 2.5and maximum principle, it is easy to conclude the uniqueness of the
solution. O

Remark. It should be mentioned that the theorem of Li and YE®] give the existence of a
A-Hermitian—Einstein metric in a stable bundle over a closed Gauduchon manifold, where
real constant depending on the slope of the bundle with respect to the Gauduchon metric;
Buchdahl[1] proves the same result for arbitrary surfaces independently; the book written
by Libke and Telemaji 2] is a good reference for this field. Whhis a closed Hermitian
manifold, the solution of equation (3.1) usually will not convergence to a Hermitian—Einstein
metric. However, in the next section, we will show that the solution of Eq. (3.2) always
converges to a Hermitian—Einstein metric which satisfies the boundary condition.

4. The Dirichlet boundary problem for Hermitian—Einstein metric

In this section we will consider the case whiénis the interior of compact Hermitian
manifold M with non-empty boundarg}, and the Hermitian metric is smooth and non-
degenerate on the boundary, holomorphic vector bubifleefined oveM . We will discuss
the Dirichlet boundary problem for Hermitian—Einstein metric by using the heat equation
method to deform an arbitrary initial metric to the desired solution. The main points in the
discussion are similar with that {@] and[18]. For given datay on 9M we consider the
evolution equation (3.2). Byheorem 3.4we know there exists a unique solutiéf(r) of
theEq. (3.2) The aim of this section is to prove thHi(r) will converge to the Hermitian—
Einstein metric which we want.
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By direct calculation, one can check that
2 2
IVHO| = [VI0]H]

for any sectior® in End(E). Then, using formula (2.10), we have

~ ad
(A_at) [V—=1AFyg —Ald|g >0 (4.2)
We first solve the following Dirichlet problem avi [20, Chapter 5, proposition 1.8]
Av = —|V=1AFy, — » Id|n,, v|oy = 0. (4.2)

Settingw(x, 1) = [y Iv/—1AFy — A Id| g (x, s) ds — v(x). From Egs. (4.1) and (4.2), and
the boundary condition satisfied by implies that, fort > 0, |/—1AFg — A Id|g(x, 1)
vanishes on the boundary bf, it is easy to check thab(x, ) satisfies

~ 0
(A - 8t> w(x, 1) > 0, w(x, 0) = —v(x), w(x, £)amr = 0. (4.3)
By the maximum principle, we have
t
/ [V—1AFp — A Id|g(x, s) ds < supv(y), (4.4)
0 yeM

foranyx € M, and O< 1 < oo.
Letry <t <1, and leth(x, 1) = H~1(x, ) H(x, 1). It is easy to check that
— Joh
h_17 = —2(W=1AFy — A Id). (4.5)

Then we have
a —
% log tr(h) < 2|/ —1AFy — A ld|y.
From the above formula, we have
ot
tr(H (x, 11)H(x, 1)) < rexp (2 / IW—1AFy — A ld|y ds>. (4.6)
1
We have a similar estimate for fi( (x, r)H(x, r1)). Combining them we have
t
o(H(x,1), H(x,11)) < 2r (exp <2/ |V—=1AFy — X 1d|g ds) - 1) . 4.7
n
From Egs. (4.4) and (4.7), we know tH(r) converge irC° topological to some continuous
metric Hy, ast —> oo. UsingLemma 3.3again, we know thak (r) are bounded i€ and
also bounded i} (forany 1< p < oo) uniformly int. On the other handH~19H/o1| is
bounded uniformly. Then, the standard elliptic regularity implies that there exists a subse-

guenceH; —> Hy in Co topology. From formula (4.4), we know thak, is the desired
Hermitian—Einstein metric satisfying the boundary condition. FRyoposition 2.4nd the
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maximum principle, it is easy to conclude the uniqueness of the solution. So we have proved
the following theorem.

Theorem 4.1. Let E be a holomorphic vector bundle over the compact Hermitian man-
ifold M with non-empty boundaryM. For any Hermitian metricp on the restriction

of E to aM there is a uniqgue Hermitian—Einstein metric H on E such tHa& ¢ over

oM.

5. Hermitian—Einstein flow over complete Hermitian manifolds

LetM be a complete, non-compact Hermitian manifold without boundary, in this case, we
will simply sayM is a complete Hermitian manifold. LEtbe a holomorphic vector bundle
of rankr overM with a Hermitian metricHp. In this section we are going to prove a long-
time existence for the Hermitian—Einstein flow over any complete manifold under some
conditions on the initial metriéfy. As usually, we use the compact exhaustion construction
to prove the long-time existence.

Let {£2;}7°, be an exhausting sequence of compact sub-domailk bé. they satisfy
Q; C ;41 andU®,£2; = M. By Theoremes 3.4 and 1.1, we can find Hermitian metrics
Hi(x, t) on E| g, for eachi such that

OH;
H atl = —2(V=1AFy, — 1 1d), H;(x, 0) = Ho(x),
Hi(x, f)]ag; = Ho(x), [[)ngo(«/ —1AFy, — A 1d) =0. (5.1

Suppose that there exists a positive numBgisuch that«/—1AFy, — A Id|g, < Co On
any points oM. Denoteh; = HO‘lH,-, direct calculation shows that

d
‘81‘ lg trh;| < 2|vV—1AFg — ) 1d|g;,
a
’8t g trih; | < 21V =1AFy, — A I\, (5.2)
By Proposition 2.2and the maximum principle, we have
sup |v—1AFy, — A ld|g, < Co. (5.3)
Q,‘X[0,00)

Integrating Eq. (5.2) along the time direction,

t
[lg trh;(x,t) —1g r| = ‘/ ;(Ig tr hi(x, s))ds| < 2Cot.
[N

Then we have

sup trh; < rexp(2oT), inf  trh; > rexp(=2CoT), (5.4)
£2;x[0,T] £2;x[0,7T]



326 Zhang Xi / Journal of Geometry and Physics 53 (2005) 315-335

and
sup tria;t < rexp(2oT), inf _tra; ! > rexp(=2CoT), (5.5)
2ix[0,7] 2ix[0.7]
This implies that
sup o(Ho, H;) < 2r(exp(2oT) — 1), (5.6)
£2;x[0,T]
and
(rexp(2oT)) L 1d < hi(x, 1) < rexp(XoT) Id (5.7)

forany (x, 7) € £2; x [0, T]. In particular, over any compact subsetfori sufficiently large
such that2 c £2;, we have the%-estimate

sup o(Ho, H;) < 2r(exp(20oT) — 1). (5.8)

£2x[0,T]
Without loss of generality we can assume tf2at B,(R), hereBo(R) denotes the geodesic
ball of radiusR with center at a fixed point € M. First, we want to show that there
exists a subsequence @ff;} converging uniformly to a Hermitian metriél,.(x, ) on
B,(R) x [0, T/2].
Direct calculation as before shows that o¥zrx [0, T

Atrh; = —2A00tr hy = —2tr(hi(V—1AFg, — A Id)) + 2tr(hi(v—1A Fpy — A Id))
— 2tr(V/—=1A0h;h Yopyhi) > —C1 + Cae(hy). (5.9)

Heree(h;) = —2tr(\/—_1A85h,-aH0h,-), C1 andC» are positive constants depending only on
Co andT, and we have used formulas (2.12), (5.3), (5.4), and (5.7). ChoosirfGciently
larger such thaB,(4R) C £2;, lety be a cut-off function which equal 1 iB,(2R) and is
supported inB,(4R). Now multiply the above inequality byv2 and integrate it ove.
Then

C> / tr(h;)y2e(h;) < C1 / trhiy? + / tr by Atr by
M M M
=c1/ trhi¢2+/ trh,-wZAtrh,'+/ tr hiy?(V, V r h;)
M M M

< cl/ trhiw2+8/ (trh,-)2|wf|2+8/ (tr hy)2y?| V|2,
M M M

Using Eq. (5.4) again, we obtain the following estimate:

T
/0 /B o e(h:) < Cs. (5.10)

Here(Cs3 is a uniform constant depending @iy, T R, andV.

Becausee(h;) contain all the squares of the first order derivatives (space direction)
of h;, h; have uniformc® bound, and als@/drh; are uniformly bounded. So, the above
inequality implies that; are uniformly bounded irL%(Bo(ZR) x [0, T]). Using the fact
thatL%(B(,(ZR) x [0, T) is compact inL?(B,(2R) x [0, T]), by passing to a subsequence
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which we also denoted Hy;}, we have that thél; converge inL2(B,(2R) x [0, T]). Given
any positive numbet, we have

T
/ / o%(Hj, Hy) < €, (5.11)
0 JB,(2R)

for j, k sufficiently large.
For further discussion, we need the following lemmas. The following Sobolev inequality
had been proved by Saloff-Cogie?, theorem 3.1]

Lemma 5.1. Let M™ be an m-dimensional complete non-compact Riemannian manifold
and B, (r) be a geodesic ball of radius r and centered at X. Suppose-tt#at< 0 is the
lower bound of the Ricci curvature &f,(r). If m > 2, there exists C depending only on m
such that

Yy
( / |f Iz‘f) ' < exp C(L + VKr)Vol(B,(r))~%/™r?
By (r)
X </ (|Vf|2+r‘2|f|2)>, (5.12)
B,(r)

forany f € C3°(B,(r)), whereq = m/(m — 2).Form < 2,the above inequality holds with
m replaced by any fixed’ > 2, and the constant C also depending only-ah

From the above Sobolev inequality (5.12) and the standard Moser iteration argument, it
is not hard to conclude the following mean-value type inequality which can be seen as a
generalization of the mean-value inequality of Li and Tdrh, theorem 1.2for the non-
negative sub-solution to the heat equation. We should point out that the elliptic case of the
following mean-value inequality had been discusseldih p. 344]

Lemma 5.2. Let M™ be an m-dimensiongdtomple) complete non-compact Hermitian
manifold without boundaryand B,(2R) be a geodesic balkenteredat o € M of radius
2R. Suppose thaf(x, t) be a non-negative function satisfying

(A _ ;) f>—Csf (5.13)

on B,(2R) x [0, T]. If —K < Ois the lower bound of the Ricci curvature B§(2R), then
for p > 0, there exists positive constar@g and C7 depending only oi€'s, m, R, K, p, T,
and the difference vector fields stich that

T
sup  f? <G / / FP(y, 1ydydr + C7 sup £7(-,0) (5.14)
B,(1/4R)x[0,T/4] 0 Bo(R) B,(R)

Lemma 5.3. Let M™ be an m-dimensiondtomple) complete non-compact Hermitian
manifold without boundaryand B, (2R) be a geodesic baltentered ab € M of radius2R.

Suppose thaf(x, t) be a non-negative function satisfyig. (5.13)on B,(2R) x [0, T].
If —K < 0Ois the lower bound of the Ricci curvature Bf(2R), then forp > 0, there exists
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a positive constanf's depending only od's, m, R, K, p, §, , T, and V such that
T
sup fP < Cg/ / fP(y, r)dyd, (5.15)
Bo((1-8)R)x[nT.(1~n)T] 0 JBy(R)
where0 < 8, < 1/2.

Proof. Setting O< n1 <72 <1/2,0 <81 < 82 <1, and lety1 € C5°(B,(2R)) be the
cut-off function

[ LixeBy((1-52)R)
V1(x) = 0: x € B,(2R) \ (Bo(1 — 81)R)

0 < ¥1(x) < Land|Vyq| < 2(52 — 81) 1R Let

Ll <t<@Q—n)T
va(t) = 9 . ;
O;t<mT,ort>(1—n)T

where 0< y(r) < 1and|dy/dt| < 2(n2 — n1)~1T~L. Multiplying 7¢~1y2 on both sides
of the inequality (5.13)4 > 1), herey(x, 1) = ¥1(x)y2(¢), and integrate it oveM. Inter-
grating by parts, and using the Schwartz inequality, we have:

20— 1) so2, [ YD) < “ w)
2 /M|Vf|w+/M—at s/M Cov+ L iVy+ 20 ) .

Integrating along the time direction, we have

//'Vfwz"” D (/ /, ("Cg‘” b IV 2y w))fq'

(5.16)

SinceM is a complete manifold, we can use the Sobolev inequality (5.12). Combining
with Holder inequality, and the above inequality, we have:

1-n2)T 2 2
/( m2) / FAAE2/m gy dr < C, ( 1 ) ( 1 > . ( q )
n2T Bo((1-82)R) n2—n1) \82— 481 2(¢—1)
(1=n)T 1+2/m
/ / f4dxdr .
mT B,((1-381)R)

(5.17)

where positive constan€, depending only otm, R, K, T and the vector fieldv.
Using Moser’s iteration, the result follows. The iteration argumentd émmas 5.2
and 5.3are similar, the only difference is the choice of cut-off functigp(z) in the
above. O
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On the other hand, froroposition 2.5we know that(H;, Hy) satisfy

~ a

Using Egs. (5.11) and (5.14), we have

sup  o%(Hj, Hi) < Cue. (5.18)
Bo(R)x[0,7/2]
Here C4 is a positive constant depending only 69, R, T, and the bound of sectional
curvature onB,(2R). From Eq. (5.18), we can conclude that, by taking a subsequéhce,
converges uniformly to a continuous Hermitian meftig, on B,(R) x [0, 7/2].

Next, we will use the above® to obtain theC1-estimate orB,(R) x [0, 7/2], the method
we used is similar to that if2, section 2.3]For any pointx € B,(2R), choosing a small
ball B, (r) such that the bundlE can be trivialized locally, and Iét,} be the holomorphic
frame ofE. So, a metridd; can be written as a matrix which also is denoteddyn B, (r).
The complex metric connection with respectHpcan be written as following

A = Hi_lﬁHi
and the curvature form
Fu, = 3(H; 10H;).

Choosing a real coordinatg;} on B.(r) and centered at Denotep; = HfldHi(a/ayl). It
is easy to check that

oy 3 718Hi 718Hi
—2¢/—=1A00y.0) — —p; = —p H: H.
H; Pl atpl o1H; o + H; o

on B.(r). In fact, this follows from Eq. (5.1) by considering the one-parameter fam-
ily of solutions obtained by translating in the direction &fdy;, H (1, ..., yam) =
Hi(y1,...,yi+s, ..., y2n). It follows that the square norrm@b = tr,olHl-_lp_l*Hi sat-

isfy

ol (5.19)

~ 0
(A - 8t) lorl%, = 0 (5.20)

on B,(r/2). On the other hand, there must exist cons@andC1o such that

o 0
Cold < {g (3))1’ 3)’1>} <Ciold

on B,(r), whereg is the Hermitian metric oM. So, we have

0H; 0H;
c H 11— g
O

< |H 'VH|% < Cio) ‘H,- .
I

H;

i
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Using formulas (5.10) and (5.20), aheémma 5.2 we can conclude that there exists a
positive constan€’11 which is independently dfsuch that

sup |Hi—1VH,-|%,0 < C11. (5.21)
B, (r/4)x[0,7/4]

Sincex is arbitrary, so we can conclude that thé-norm of H; is bounded uniformly on

any B,(R) x [0, T/4]. By theCP%-estimate Eq. (5.8) and the abav&-estimate, the standard
parabolic theory shows that, by passing to a subsequéhoenverges uniformly over any
compact subset o#f x [0, co) to a smoothH,, which is a solution of the Hermitian—
Einstein flow Eq. (2.6) on the whole manifold. Therefore we complete the proof of the
following theorem.

Theorem 5.4. Let M be a complete non-compact Hermitian manifold without boundary
let E be a holomorphic vector bundle over M with initial Hermitian mefdg: Suppose that
there exists a positive numbép such that] «/—_1AFH0 — M 1d| < Cg everywherewhere

A is a real numberthen the Hermitian—Einstein flow

oH
H_lﬁ = —2(v=1AFy — A Id), H(x,0) = Ho,

has a long-time solution oM x [0, c0).

6. H-E metrics over complete Hermitian manifolds

In this section, we consider the existence of the Hermitian—Einstein metrics on some
complete Hermitian manifolds. As above, complete means complete, non-compact, and
without boundary. Since we have established the global existence of the Hermitian—Einstein
flow on any complete Hermitian manifold, one could hope that the Hermitian—Einstein flow
will converge to a Hermitian—Einstein metric under some assumptions. But, in the following
we will adapt the direct elliptic method, the argument is similar to that Ni and Ran are used
in the Kahler cas¢15].

Let {£2;}2, be a exhausting sequence of compact sub-domaird, aind Hy be a
Hermitian metric on the holomorphic vector bundie By Section 4 we know that the
following Dirichlet problem is solvable o;, i.e. there exists a Hermitian metrig;(x)
such that

v —1AFy, =0, forxe £, Hi(x)|ae2; = Ho(x). (6.1)

In order to prove that we can pass to limit and eventually obtain a solution on the whole mani-
fold M, we need to establish some estimates. The key i§®estimate. Frontorollary 2.8
we have the following Bochner type inequality.

AlG(trhi +tri; Yy > —2|/=1AFy, — A Id|gy, forx e £2;,
g(tr h; +trh; Yaq, =g 2r. (6.2)
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Hereh; = Hy *H;. Let6; = &(Ho, H;) = Ig(tr h; + tr h7Y) — Ig 2r, we have
AG; > —2|N—=1AFp, — A ld|p,, forxe £, Gilag, = 0. (6.3)

Next, we impose three invertibility conditions on the holomorphic Laplace operator between
suitably chosen function spaces.

Condition 1. There exists positive numbgr> 0 such that for every non-negative function
f e LP(M) N CO(M), there exists a non-negative solutiore CO(M) of

Au:—f

Condition 2. There exists positive numbgr> 0 such that for every non-negative function
[ € C8(M), there exists a non-negative solutiore C°(M) of

Au = —f

Condition 2'. There exists positive numbgr> 0, " > 0 such that for every non-negative
function f € Cﬁ(M), there exists a non-negative solutiore Cg,(M) of

Au:—f

whereCﬂ(M) denote the space of continuous functidnghich satisfy that there exists
xp € M and a constar€( f) such that f(x)| < C(f)(1 + dist(x, xp)) M.

Theorem 6.1. Assume that M is a complete Hermitian manifold such that for the holo-
morphic Laplace operaton on M, Condition 6is satisfied with positive numbgr> 0 (or
Condition 6is satisfied with positive numbg). Let(E, Hp) be aholomorphic vector bundle
with a Hermitian metricHp. Assume thal/—1A Fy, — A Id|| g, € LP(M) for some real
numberi (or ||/ —1AFy, — A Id|| p, € Cg(M)), then there exists a Hermitian—Einstein
metric H on E. If M satisfiesCondition 6,and the initial Hermitian metricHy satisfies
||«/—_1AFH0 —Ald|uy € ClO (M), then there exists a unique Hermitian—Einstein metric H

7

with 6(Hp, H) € Cg,(M), hereg is defined in(6.3).

Proof. Using the maximum principle, from Condition 6 (or Condition 6) and formula
(6.3), we can conclude that the Donaldson’s distance o(Ho, H;) betweenH; and Hy
must satisfy

o; < 2rexpu — 2r. (6.4)

for any x € ;. Whereu satisfiesAu = —2|/—1AFy, — A Id|n,. From the above®-
estimates, and discussing like that in the prooTh&orem 5.4we can obtain a uniform
Cl-estimates oH;. Then standard elliptic theory shows that, by passing a subsequgénce,
converge uniformly over any compact sub-domairivbfo a smooth Hermitian metriel
satisfying

vV—1AFyg —Ald =0.
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When M satisfies Condition 6, using the maximum principle, the Hermitian—-Einstein
moetric H which we obtained in the above must satigfyHy, H) < u. So,6(Hop, H) €
C(M).

MFinaIIy, we prove the uniqueness of the Hermitian—Einstein metric with the mentioned
properties. Letd be another Hermitian—Einstein metric for the same real nuthloerthe
bundleE and satisfie$(Ho, H) € Cg,(M). Hence for every outside a sufficiently large
geodesic balB,(R) around an arbitrary € M, we have

o(Ho, H) <e, and o(Ho, H) <e.

By the definition of the Donaldson’s distangeand the above inequalities, it is not hard to
conclude that:

2
- 1 1
o(H, H) < 2r <1+\/e—462+26> —2r

outside the geodesic ba|,(R). On the other hand, frofroposition 2.4we have:
Ao (H, H) > 0.

By the maximum principle this implies(#, H) <2r(1+ /e — 1/4~1€2 +1/2¢)? — 2r on
all of M for everye > 0 and hence(H, H) = 0. This impliesH = H. O

Remark. Condition 6 is introduced by Grunau andiKnel in[5] where they discuss the
existence of holomorphic map from complete Hermitian manifold, and they had constructed
some examples which satisfy Condition 6. Next, with the help of the following two defini-
tions, we want to discuss Condition 6 on the holomorphic Laplace operator.

Definition 6.2 (Positive spectrum). Lé¥l be a complete Hermitian manifold; we say the
holomorphic Laplace operatot has positive first eigenvalue if there exists a positive
numberc such that for any compactly supported smooth funcgi@ne has

/M (—Ap)p > c /M ¢°. (6.5)

The supremum of these numbenwill be denoted byt1(M).

Definition 6.3 (L2-Sobolev inequality). LeM be anm-dimensional(complex) complete
Hermitian manifold, we say the holomorphic Laplace operatosatisfiesL2-Sobolev
inequality if there exists a constaS{M) such that for any compact supported smooth
function¢ one has

/M (—Ag)p > S(M)( /M g/ @n=2))(@n=2/2m (6.6)

Lemma 6.4. Let M be a complete Hermitian manifolend the holomorphic Laplace
operatorA has positive first eigenvalug (M). Then for a non-negative continuous function
f the equation

Au:—f
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has a non-negative solutiom e WIZU’CZ”’ N Cllo’f(M)(O <a<1)if fe LP(M) for some
p=> 2

Proof. We first solve the following Dirichlet problem aR; [20, Chapter 5, proposition 1.8]
Aui=—f  uilag, =0. (6.7)

Heres2; is an exhaustion d¥l. First, by the maximum principle, we know thagt> 0. Now
multiplying uf’_l on both-sides of the equation and integrating by parts we have that

fulpil = (—Aui) . ulp71 =(p-— 1)/ uf72|Vu,'|2 — / ufﬁl(V, Vu;).
2; 2; 2; £2;
(6.8)

On the other hand, using the assumption th&d7) > 0,we have

~ ~ p/2y p/2 2 -2 -1
o [ = [ Rl = (8 [ PvuE -2 [ v
21 £2; 2 £2; 2 £2;

(6.9)
Adding Egs. (6.8) and (6.9) we have

P il P (P 22§ b
Z/Qiful 22(2 1>/Qul [Vu;]| +k1(M)/!2iul. (6.10)

i

From the above inequality, usingdttler inequality, we have

Yp 1p
4 < 7 P ‘ .
(/.o g ) = 20() (/M ! ) (6.11)

Using the interiolL? estimates for the linear elliptic equati¢i6], theorem 9.11)ve know

that, over a compact sub-domaih there will be a uniform bound fqru,-||W2,p(Q). There-
fore, using Rellich’s compactness theorem, by passing to a subsequence we know that
will converge to a solution € Wli’c”(M) on the manifoldM, and the standard elliptic theory

can show that € Cig2(M). O

By simply replacing the Poincare (Eq. (6.5)) inequality by the Sobolev inequality (Eq.
(6.6)) in the proof of above lemma, we can prove the following lemma.

Lemma 6.5. Let M be an m-dimensiongtomple} complete Hermitian manifold, and
the holomorphic Laplace operatot satisfy theL?-Sobolev inequality6.6). Then for a
non-negative continuous function f the equation

Au=—f

M) < a < 1)if f € LP(M)forsomen >

C

has a non-negative solutisne W22 N C;;
p=2.
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The above two lemmas show that when the holomorphic Laplace opératas positive
first eigenvalue (or satisfies tHe Sobolev inequality) then Condition 6 must be satisfied
for some positive numbe.

Corollary 6.6. Let M be a complete Hermitian manifoldnd the holomorphic Laplace
operatorA has positive first eigenvalug (M). Let(E, Ho) be a holomorphic vector bundle
with Hermitian metricHo. Assume that/—1A Fy, — A Id|| € LP(M) for somep > 2and
real numberi. Then there exists a Hermitian—Einstein metric H an E

Corollary 6.7. Let M be an m-dimension&omple} complete Hermitian manifold, and
the holomorphic Laplace operatat satisfy thel.2-Sobolev inequalit{6.6).Let(E, Ho) be

a holomorphic vector bundle with Hermitian metfiy. Assume thaty/—1AFp, — A Id| €
L?(M) for somep € [2, m/2) and real numbei. Then there exists a Hermitian—Einstein
metric H on E
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